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The Stowe Maths Review

The Stowe Maths Review is a magazine that gives an insight into maths at
Stowe!
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Prove by contnadiction thal the squane hools of
pnime numbers are (nralional

By Oliver Vinee

A phime i4 a numben that is divisible only by ttaelf and / (e.g. 2. 3. 5. 7. /). An
innational number té a numbenr that cannot 6e made by dividing 2 numbens.
Uiehefone. (L (s expredied ad decimal with an infinite numbet of digits to the hight

of the decimal point, without nepetition (e.g. Pi/T = 3./9/1692653......... ).
Proof by Contradiction

lf we say that "p’ i a prime number and let's asdume that o ¢4 hational.

\/,a, L4 Uhenefone national and it can be nepnredented ad the natio of 2 integekd.
Thenefone it can also be hepresented as the hatio of 2 co-phime integend (2
integend thal kave no faclord in common). so an ihheducible fraction.

o = a/b € cannot be neduced

- So if we squane both sided p = a"/é" .
- Then multiply both sides by b° b'p

This tells us that ‘p’ must be a factor of ‘o’

- ‘e’ weitten as a product of primes (f = factor): a = §I x §2 ... x fn.
- ‘a?’ whitten as a product of primes. @’ = (fl x 2 ... fn)fl x 2 ...4n).

Thenefore ‘n’ is also a factor of ‘a’ > ‘a’ is a multiple of ‘p’ > a = ko (K =
dome integen).

gwéu&mm&; this back into b’a =
= (kp)
é? (2 2
Kop (dividing by "p*) > “6°° t6 @ multiple of ‘n* > ‘b’ is a multiple of ‘n’.

This proveds that o # a/b (40 \/,a, td innationat) dince b’ io a mulliple of ‘n’ and
@’ i @ multiple of ‘p’. the numenator and the denominaton can be divided by

\N_ ¢

w’.
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Complex Numbers aren’t that

Complex
By Toby Lawrance

Complex numbers provide solutions to ¢
don’t normally have a solution. Such as
where x = +V—1 but...we have a problet
doesn’t exist, you can’t square \rootfa negat
Except...you can and the answer is reps
letter i. Where i? = —1 and thereforei'

the lack of real world equwalent A compl!
made of a real part and gn 1,mag1nary pait
The roots of the equatmm f‘x,- 3)? 'a ‘

all we had to do was add a ltgttef' and
Corr{plex numbers can b sed for a buné
but they’re notable for a%éw most people have se
equation: e'™ + 1 = 0 and potentig Ily know 't as B
formula The proof for Wthh pro i ;
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This provides us with some additional S
info...namely, the angle it makes with the _

positive x-axis and it’s magnitude which
length, in this instance, the magnitude is

V32122 =13 and fhe angle from the

positive x-axis, known as its ¢ argum 1t

which is measured in radlans, 1&
0.588 SR

atan

ﬁ

From this we can write

another form-"?ﬁ_ﬂjf_é wh

Therefore
whlch m.,
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The Basel Problem

By Hugo Barnet

IR S S
49 16 25 36

It seems like a simple problem, which many would go about by adding
up the first few terms and trying to develop a pattern... However, some
A-level students might have the bright idea of summing up some
geometric series. Sounds straightforward, doesn’t it? However, one
quickly realizes it is not so easy. In fact, it took one of the greatest
mathematical minds in human history to solve it — Leonhard Euler. It
was called ‘The Basel Problem’ after Euler’s hometown. The
mathematician Pietro Mengoli first proposed this in 1644, and it took
about 90 years to solve. Fairly long time, huh?

Personally, I really enjoyed the proof of this problem because it
combines a couple of different areas of mathematics and also once
you get your head around it, the proof seems dead easy. In this
article, I will attempt to make you, the reader, understand the beauty
behind the proof. Hopefully it will inspire you to look past some of the
tiresome and boring mathematics that is taught in schools and start
to see it as the vibrant, creative subject it really is.

So to start the proof, we need to look into a bit of trigonometry.
Particularly, the Sinx curve. As many of you will already know, the
curve f(x)=sinx will look like this




When they ask you in the exam: What is the solution to f(x)=sin(x), you
would be right in saying n, but then again you would be right in say 2 n or
3n. You would be right in saying “any integer number n”, because the sin(x)
curve passes the x-axis infinitely many times at the coordinates (k n,0) where
k is an integer. For those saying to themselves, “what on earth is this guy is
talking about”- as one advances through the world mathematics we start to
use the unit system of radians instead of degrees. It very simple, 360
degrees is 2, 180 degrees is n ect.

Sin (%) ,\(1_5 M +207) (x 3t) (x t Gn)

We can use this to find a polynomial for sin(x). If the solution for sin(x) is K
n then we can make this polynomial. Through some basic algebra we can
manipulate the equation so that we can get sin(x) in the form of

Sin ()3 (177 2) /2 "
\\(X)_)\(L 7 )/)( (1/,‘)(;‘-‘//(2)/13/{7/3)

L
X

A 7 / 2. 2
re-)(Z - =&

If we mutiply out this polynonial we can get the a seires with all the cofficent
to the x"2

dNa (K \,-{(/

< f G [ (
n (x) X(l - X <‘H 5 ‘\ ,
e T g =, b !

< nu | = . 2 , =<
n A [ q 2 e 3 ; )
> Ll

The next step to this problem requires some higher knowledge on the sin(x)
curve that most of the reader will be unfamilar with. To get more familiar,
one should look up taylor seires. Basically, the sin function can be written
as an infinite sum.

Sinx) = X = & &

Euler started by imagining another seires very similar to the sin(x) but this
time he called it the P(x). It was essentially the sin curve but with one less in
the powers of X. Euler was then able to say that xP(x) was equal to the
polynomial sin x.
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If that is true then xP(x) must be equal to the polynomail we previously
wrote down. Therefore ;
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Number Theory

Introduction

The Number Set is a set of positive integer numbers 1,2,3,4,5,6,7,..., Devoted primarily to the studies
of integers and is sometimes called “The Queen of Mathematics” due to its foundational place in the
discipline. It consists of the study of the properties of the whole numbers. Prime and Prime
factorization are especially important in number theory, as are many functions such as the divisor
function, Riemann zeta function, and totient function. Excellent introductions to number theory may
be found in Ore (1988) and Beiler (1966).

Main difficulty in proving relatively simple results in number theory prompted no less an authority
than Gauss to remark that "it is just this which gives the higher arithmetic that magical charm which
has made it the favourite science of the greatest mathematicians, not to mention its inexhaustible
wealth, wherein it so greatly surpasses other parts of mathematics." Gauss, often known as the
"prince of mathematics," called mathematics the "queen of the sciences" and considered number
theory the "queen of mathematics" (Beiler 1966, Goldman 1997). In contrast to others branches of
mathematics, many of the problems and theorems of number theory can be understood by
laypersons, although solutions to the problems and proofs of the thearems often require a
sophisticated mathematical background.

Until the mid-20th century, number theory was considered the purest branch of mathematics, with
no direct applications to the real world. The advent of digital computers and digital communications
revealed that number theory could provide unexpected answers to real-world problems. At the same
time, improvements in computer technology enabled number theorists to make remarkable advances
in factoring large numbers, determining primes, testing conjectures, and solving numerical problems
once considered out of reach.

In today’s world, the Modern number theory is a large subject that is divided into subjects that
include elementary number theory, algebraic number theory, analytical number theory, geometric
number theory, and probabilistic number theory. These categories reflect the methods used to
address problems concerning the integers.

From Pre-History Through Classical Greece

Near the beginning of civilisation, people had understood the idea of ‘multiplicity’ and so had taken
the first steps toward a study of numbers. It is known that the understanding of numbers existed in
ancient Mesopotamia, Egypt, China, and India, for tablets, papyri, and temple carvings from these
early cultures have survived. A Babylonian tablet known as Plimpton 322 (c. 1700 bc) is the main
point. In modern notation, it displays number triples x, y, and z with the property that x2 + y2 = z2.
One such triple is 2,291, 2,700, and 3,541, where 2,2912 + 2,7002 = 3,5412. This reveals a degree of
number theoretic agreement in ancient Babylon.

DIETLEROS
An author of a book — Arithmetica. The equations are called Diophantine Equations of which the

solutions must bewhole numbers. For example, Diophantus asked for two numbers, one a square and
the cube, so that the sum of their squares is square itself. In today’s symbols, he sought integers x, v,
and z such that (x2)2 + (y3)2 = z2. Finding real numbers is easy satisfying this relationship (e.g., x = V2,
y =1, and z = V5), however, the requirement that solutions be integers makes the problem more
difficult. (One answer isx =6, y = 3, and z = 45.) Diophantus’s work strongly influenced the future
mathematics.



Number Theory in the East

Chinese and Indian scholars proposed their contribution to the theory. They were so motivated by
guestions of astronomy and the calendar, the Chinese mathematician Sun Zi tackled multiple
Diophantine equations. He asked for a whole number that when divided by 3 leaves a remainder of 2
when divided by 5 leaves a remainder of 3, and when divided by 7 leaves a remainder of 2 (his
answer: 23). Almost a thousand years later, Qin Jiushao (1202—61) gave a general procedure, now
known as the Chinese remainder theorem, for solving problems of this sort.

Modern Number Theory

From 1400 to 1650, as mathematics flowed from the Islamic world to Renaissance Europe, the
amount of attention number theory got decreased. Important advances in geometry, algebra, and
probability have occurred not to mention the discovery of both logarithms and analytic geometry. But
number theory was a minor subject and therefore only of a recreational interest.

Pierre de Fermat

Pierre de Fermat (1601-65), has changed the perception a French magistrate who had time and a
passion for numbers. Although he published little, Fermat posed the questions and identified the
issues that have amended number theory ever since. For example:

1. In 1640 he proposed what is known as Fermat’s little theorem, that if p is prime and a is any whole
number, then p divides evenly into ap —a. so,if p =7 anda =12, the far-from-obvious conclusion is
that 7is a divisor of 127 — 12 = 35,831,796. This theorem is one of the great tools of modern number
theory today

2.In 1638 Fermat stated that every whole number could be expressed as the sum of four or fewer
squares. He claimed to have a proof but did not share it.

Uncharacteristically, Fermat gave a proof of this final and last result. He used a technique called
‘infinite descent’ that was ideal for demonstrating the impossibility. The logical strategy assumes that
there are whole numbers satisfying the condition in question and then generates smaller whole
numbers satisfying it as well. Reapplying the argument over and over, Fermat produced an endless
sequence of decreasing whole numbers. But this is impossible, as every set of positive integers must
contain the smallest member. By this contradiction, Fermat concluded that no such numbers could
exist in the first place. Despite Fermat’s unique, number theory still was relatively rejected perhaps
because of his reluctance to supply the proofs.

Prime Number Theorem

One of the largest achievements of 19th-century mathematics was the prime number theorem. First,
you designate the number of primes less than or equal to by rt(n). Thus t(10) = 4 because 2, 3, 5, and
7 are the four primes not exceeding 10. Similarly 1t(25) =9 and t(100) = 25. Next, consider the
proportion of numbers less than or equal to n that are prime—i.e., m(n)/n. Clearly, t(10)/10 = 0.40,
meaning that 40 percent of the numbers not exceeding 10 are prime.



The prime number theorem identifies at least one, thereby provides a rule for the distribution of
primes among the whole numbers. The theorem says that, for large n, the proportion rt(n)/n is
roughly 1/log n, where log n is the natural logarithm of n.

Prime number theorem
(ilustrated by selected values n from 10%to 10%)

1,229

78,498

5,761,455
455,052,511
37,607,912018
3,204 941,750,802

Number Theory in the 20t Century

The 20t Century saw an explosion in number theoretic research. As well the classical and analytic
number theory, scholars now explored specialised subfields such as algebraic number theory,
geometric number theory, and combinatorial number theory. The concepts became more abstract
and the techniques more sophisticated. Therefore, the subject had grown beyond Fermat’s dreams.

A legendary figure in 20th-century number theory was Paul Erd6s (1913—96), a Hungarian genius
known for his deep insights, his vast circle of collaborators, and his personal oddities. At age 18,
Erd&s published a much more simplified proof of a theorem of Chebyshev saying that, if n > 2, then
there must be a prime between n and 2n. This was the first in a string of number theoretic results
that would span most of the century. In the process, Erd6s—who also worked in combinatorics,
graph theory, and dimension theory—published over 1,500 papers with more than 500 collaborators
from around the world. He achieved this success while constantly travelling from one university to
another in pursuit of new mathematics. It was not uncommon for him to arrive, unannounced, with
the declaration that “My brain is open” and then to plunge into the latest problem with gusto.
Twentieth-century number theory reached a high climax in 1995, when Fermat’s last theorem was
proved by the Englishman Andrew Wiles, with timely assistance from his British colleague Richard
Taylor. Wiles succeeded where so many had failed with a 130-page proof of incredible complexity,
one that certainly would not fit into any margin.
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meter, than 2 = V2 . Now you are
thinking: What? This is impossible,
- impossible te'reduce this distance
-of 2 to its square root by simply
stepping it infinitely. The catch
here is that by stepping inﬁn..itely,

)

sel f-sim la'p'hke the s o
et

-

Fractals are a pa;adoyz.themselves

since if infinitely recursive, they ' .
have an infinite perimeter for a

ffinite volume. This is true for all

fractals as it is part. of their

definition!



T - !
PROVE =
2 ;(21”1)!!

(2k+1)!' means (2k +1)(2k -1)(2k -3)...
We know

(2k+1)!=(2k +1)(2k)(2k -1)(2k - 2)(2k -3)...
= (2k+1)(2k=1)(2k - 3)...(2k)(2k - 2)(2k - 4)...
= (2k +1)(2k=1)(2k -3)..2° (k) (k-1) (k= 2)...
= (2k+1)112°k!

So

(2k +1)1=(2k +1)112°k!

(2k+1)!

=>(2k+1)!!= T

Using the definition of n choose r

(j) “( —nr!)!r!

= 2k = (2k)! =(2k)! lets call this B
k (2k—k)!k! k'k!

k'k'

T 2R 2k 2
5_2(21”1)!_;(21”1 ; 2k +1)

Substituting B into E 1, we get

Sale )

0

(2k)!



Generating Functions

A Generating Function f (x) is a power series

f(x)= ganx"

whose coefficients give the squence {a,,q,,qa,...}

An example,

Consider the infinite series f (x) = Ex” =l+x+x"+x....
n=0

The generating function for this series is

f (x) = %, This is trivial, using G.P and realizing

1 -1
Expan ion of — =(1-x
! 1-x ( )

Now,

What is the generating function for



Theorem

: : 4" (2n)"
Generating function A(t)=¢

2n+1in
1 t t
=—,/—arctan /—
t\N1-t 1-¢

Proof
n al n+l =
Let A = - (Zn) =A = 2 (2n+2)]
2n+1\n 2n+3\n+l1
44" (2n+2)! _1_4-4”. (2n+2)! )
2043 \(2n42-(n+1)!(n+1)!) 2043 {(n+1)(n+1)!

44" (n+)(n+1)! 4-4"  (n+)nl(n+1)!
2n+3 (2n+2)! 2n+3 (2n+2)(2n+1)(2n)!
4-4" (n+1)n!(n+1)! 2-4" n!(n+1)!

2143 2(n+1)(2n+1)(2n)! 2n+3 (2n+1)(2n)!

24" n!(n+1)n! _2(n+1). 4" nln!
2n+3 (2n+1)(2n>! 2n+3 (2n+1) (2n)!

2(n+l) 4" pint 2(n+l) 4" .(2;@)‘1

2n+3 (2n+1) (Zn)! 2n+3 (2n+1) n

2(n + 1)
An+1 = —An
2n+3



(2n+3)A,, =2(n+1)A,
(2n+2)A,, +A,, =2(n+1)A,

2(n+1)A,, +An+1 =2(n+1)A,

Generating function for 2(n+ I)A is

n+l

Genemtlng function for A4 ,, is

EAnﬂt" —A+A+AL 4. = A-4, ,notice A,is 1
!

n=0

and finally generating function for 2(n+1)A, is 2(A + d% t)

this leads to a differential equation,

2d—A E =2A+ 2td—A which leads to

dt t dt
dA +( I- 2t2 )A = ! - call this equation (D)
dt \2t-2t 2t -2t

This, first order linear differential equation, can be solved
using integrating factor and partial fractions.
(Solving D 1s left as an exercise to keen students)

Solving (D) we get

A=1,/Larctan‘fL
t\N1-t¢ 1-1



Going back to

T o k! 52F (2K
5_;(2k+1)!!_2(2k+1)(k )
W.

e have show that the generating function for the sequence is

) o TS )

If welet t=2"
= 4" (2n) =( 47 (2n)" BV 4”'(2_1)n 2n\"
2 2n+1(n ) ) ;[2“1( ) )(2 ) _2 2n+1 (n )

S[ |- s s o)

0

This 1is the squence we began with.

So for t=2"
E — arctan . =2arctan(1)=2-£=£
t\N1-t 1-¢ 4 2

Q.E.D

By Mr YADSAN
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equations using augmented matrices and elementary
rowoperations. We progressed to the determinant function
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determinant of Hessian Matrix.
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Gaussian Group
2016 - 2017

This year Stowe’s Maths Society, the Gaussian Group, had several meetings
covering a broad range of topics from quantum mechanics to the maths
behind bottle flipping!

Our meetings started off with a captivating but complex proof

which showed that two parallel lines, in fact, meet at infinity. Mind-boggling!
In the following week we had a lower school Gaussian group meeting where
the connection between mathematics and hate was investigated. In this talk
'Geometry of Hate' we explored: the subtle relationship between
mathematics and hate, Hitler and mathematics and how failure in
mathematical thinking could lead to fascist movements and civil wars?

In the next a few meetings we focused on the lecture series called “The loss
of Truth”. We started off with the famous Russell’s paradox:

Suppose there is a town with just one barber. In this town, every man either
1) Shaves himself, or
2) Is shaved by the barber.

If the barber shaves himself, then which category does he fall into? Men who
shave themselves or Men who are shaved by the barber?

We realized that the Russell’s paradox was not simply a philosophical word
game but it was a dagger that penetrated the heart of mathematics because
it pointed out an inconsistency in the set theory, which is the foundation of
mathematics, everything else in mathematics built on it.



In the following lectures we witnessed how hard mathematicians worked, for
many years to overcome this difficulty and save Cantor’s infinite sets. This
paradox was finally solved by redefining the set theory through ZF-Axioms.

Following the loss of truth series, Stoics enjoyed two fascinating talk from
Hugo Barnett and Toby Lawrance. Hugo’s talk was on number theory where
he demonstrated how messages are coded. Toby’s talk discussed different
bases, as used by the Babylonians, and explained the advantages of us
changing from our current base 10 number system to a base 12 number
system.

Just before Christmas, the Gaussian group held a quiz night organized by
our diligent president Anna Wilson. It was both enjoyable and challenging —
as all Gaussian group meetings are and it was the perfect way to end a very
busy term.

The first meeting in the Lent term was a joint event with the school’s second
best society: The Quantum Society. The talk was thought provoking and
asked profound questions; It was called,

“Machine vs Soul. On the interpretations of Quantum Mechanics”.
In the talk we tackled both mathematical and philosophical problems:

Isn't the nature of reality and our perception of it is fascinating? The
Observer effect is highly respected and an experimentally verified fact in
Quantum Mechanics. When we look at something we change it! Just by
looking at it. Do you believe that? Do you believe that you are changing this
article simply by reading it! That’s what Quantum Mechanics says. Why
does Quantum Mechanics abstract observer from reality? Why does it treat
human perception as an outsider who perturbs the system? What if we are a
part of the truth and not an outsider?

The next event was made up of two talk by members of the Gaussian group.
Anna Wilson gave an interesting and inspiring talk on Golden Ratio and its
applications in the nature. We have noticed that there is a mathematical
reason why the four-leaf clover is hard to find and is lucky. Because four is
not a Fibonacci number, therefore it is hard to find in the nature.

Stuart Milner gave a talk on something very simple but we all were amazed

to see how mathematical physics played a crucial role in ‘bottle flipping’. His
talk made the relation between the stability and the centre of mass more
visible to all listeners. Adrian Koch then gave a talk on Artificial Intelligence
where he linked computer sciences and mathematics.

The last event of this academic year was a distinguished speaker: Dr Marcus
Appleby:



/ What doés an afi)mAlook
like?’

Dr Marcus leby, from Sydney University visited Stowe to give a talk

on the Philosophy. of Quantum Mechanics, entitled “What does an atom
look like?” He is one'of the world’s leading Quantum Physicist in his field \
of SIC-POVM (A symm}t{ic, informationally complete, positive operator ‘

- valued measure). His talk pointed out a fundamental contradiction 77
between our perception and how nature works. He pointed out that: '

L .
oot | =

“On one hand, we are the masters of the universe at subatomic level. We

understand it so well that we can even build nuclear bombs. But on the
. other-hand, Quantum Mechanics clearly demonstrates that we don’t even
know what an electron is. Is it a particle or a wave or both or none? In fact,
we don’t even know whether is it somethirlg physical or it is simply a
¢ mathematical modelling?”

This was an extremely profound statement and left the room speechless!
- This talk was the best way to wrap up the Gaussian groups meeting in
this academic year and we’d like to thank Dr Marcus Appleby for giving
such a gripping talk.
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Oxbridge lessons, where Oxbridge hopefuls gather to tackle MAT and STEP questions.
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Maths Jokes

Why can’t a bicycle can’t stand alone?
because it is two-tired.
Statistics show that those who celebrate more birthdays live longer.

A statistician can have his head in an oven and his feet in ice, and he will
say that on average he feels fine.

According to my calculations, the problem does not exist.

There are three kinds of
mathematicians: those who can
count, and those who cannot.

Mathematics consists of 50%
formulas, 50% proofs and 50%
imagination.

Maths riddles

Which month have 28 days

All of them

What insect is good with
numbers?

An account-ant

Who invented the fractions?

Henry the Eighth

How can you tell that the fractions x/c, y/c and z/c live in a foreign
country?

Because they are all over c's.



USING THE CLUES, COMPLETE THE FOLLOWING CROSSWORD PUZZLE!
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Across
2. The point (0, 0) on a coordinate plane, where the x-axis and the y-axis intersect.
4. The vertical axis in a Cartesian coordinate system.

7. Set of two numbers in which the order has an agreed-upon meaning, such as the Cartesian coordinates (x,

y), where the first coordinate represents the horizontal position, and the second coordinate represents the
vertical position.

9. One of two or more expressions that are multiplied together to get a product.
10. The line segment connecting two nonadjacent vertices in a polygon.

13. The smallest nonzero number that is a multiple of two or more numbers.

14. A selection in which order is not important.

15. A closed plane figure made up of several line segments that are joined together.
20. A five-sided polygon.

22. A number or symbol, as 3 in (x + y)3, placed to the right of and above another number, symbol, or
expression, denoting the power to which that number, symbol, or expression is to be raised.

23. The number of square units that covers a shape or figure.

24. Given or x*n, the "x" is the base. The base number gets multiplied by itself the number of times
indicated by the exponent, "n".

25. A constant that multiplies a variable.
26. The sum of the lengths of the sides of a polygon.

27. A mathematical statement that says that two expressions have the same value; any number sentence with
an equal sign.

28. The horizontal axis in a Cartesian coordinate plane.

Down

1. The square root of x is the number
that, when multiplied by itself, gives
the number, x.

3. The largest number that divides two
or more numbers evenly.

5. Aletter used to represent a number.

6. A parallelogram with four equal sides.

8. A quadrilateral with four equal sides
and four 90 degree angles.

11. Parenthesis, Exponent, Multiplication,
Division, Addition, Subtraction.

12. One method for calculating the total
number of outcomes in a sample
space.

16. A measurement of space, or capacity.

17. The union of two rays with a common
endpoint, called the vertex.

18. A quadrilateral with four 90-degree
angles.

19. The side opposite the right angle in a
right triangle.
21. A three-sided polygon.
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