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Prove  by con tradi c t ion that  the  square  roo t s  o f  
pr ime numbers  are  irrat i onal  

By Oli ver  Vince  
A prime  i s  a  number  tha t  i s  d i v i s ib l e  only  by  i ts e l f  and 1  (e .g .  2,  3,  5,  7 ,  1 1 ) .  An 
i r ra t i ona l  number  i s  a number  that  cannot  be  made  by d i v id ing  2  numbers ;  
there fore ,  i t  i s  expressed as  d ec imal wi th an in f in i te  number  o f  d ig i t s  t o  the  r igh t  
o f  the  d ec imal  po in t ,  w i thou t repet i t i on  ( e .g .  P i/π =  3 . 14 1592653………) .  
Proo f  by  Contradic t i on  
I f  we  say  that  “p”  i s  a pr ime  number and  le t ’ s  assume that  √p i s  ra t i ona l .   
√p i s  there fore  rat i ona l and i t  can be  r epresen ted as  the  ra t i o  of  2  in t egers .  
There fore  i t  can also  be  r epresen ted as  the  ra t i o  o f  2  c o -pr ime  in t egers  (2 
in t egers tha t have  no  fac tor s in  common) ,  s o an ir reduc ib le  frac t i on .     
√p = a/b  ß  canno t  be  r educed 

- So  i f  we  square  bo th  s id es p =  a 2/b2.   
- Then mul t iply  bo th  s ides  by  b 2  b 2p = a2.  

Th i s  t e l ls  u s  tha t  “p”  mus t  be  a  fac tor  o f  “a 2” .  
- “a”  wri t t en  as  a produc t of  pr imes  ( f  =  fac tor ) :  a = f 1  x f2  … x  fn .  
- “a 2”  wri t t en  as  a product  of  pr imes :  a 2 =  ( f 1  x f2  … fn ) ( f 1  x f2 …fn ) .  

Therefore  “p”  i s  a l so  a  fac tor  o f  “a”  à  “a”  i s  a  mul t iple  o f  “p”  à  a  =  Kp (K  =  
some in t eger ).  
Subst i tu t ing  th i s  back  in to  b2p = a 2 

b 2p = (Kp ) 2 

b 2p = K2p2 

b 2 =  K 2p (d i v id ing by  “p”)  à  “b 2”  is  a  mul t iple  o f  “p”  à  “b”  is  a  mu l t ip le  o f  “p” .  
Th i s  proves  that  √p ≠ a/b  ( so  √p i s  ir rat i ona l ) s inc e  “b”  is  a  mul t iple  o f  “p”  and 
“a” i s  a  mul t iple  o f  “p” ,  the numera tor  and the  denomina tor  can be  d i v id ed by  
“p” .  
 
	

	



	

	
	
	
	
	
	
	
	
	

Cryptography and Prime 
Numbers 

By Anna Wilson 
Prime numbers have fascinated mathematicians for centuries, showing 
up in surprising places in nature, such as the shape of shells, and being 
the reason four leaf clovers are so rare. Yet despite all the work invested 
in them, and all the progress made, prime numbers continue to challenge 
mathematicians and many problems remain unproved centuries on, such 
as ‘The Goldbach conjecture’ –that positive integers greater than 2 can be 
expressed as a sum of two primes, or ‘The twin prime conjecture’- that 
there are an infinite number of twin primes.  

Prime number become ever more important as computers develop due to 
their use in cryptography. Prime numbers are important for public key 
cryptography, because a very large number is used as a public key to 
encrypt a file, but in order to decrypt the file the prime factors of the large 
number must be worked out. This is both very difficult and time 
consuming as there seems, currently, to be no easy method for prime 
factorisation.  This means the large number used to encrypt a file can be 
publicly known without compromising the safety of a file. Although 
technically given enough time the prime factors could be worked out, - 
Some estimates suggest it would take a modern super computer longer 
than the current age of the universe to work out a 256-bit factorisation. 

It can be proved that - any positive integer greater than 1 is equal to a 
product of prime numbers. 

In this proof, the number of primes in a product must be allowed to be one, 
since a prime number is itself the product of one prime. If n is a positive 
integer then for n≥2, let P(n) be the statement that n is equal to a product of 
prime numbers.  

P(2) is true as 2=2. 

Suppose that P(2),…,P(n) are all true, meaning every integer between 2 and 
n has a prime factorisation . If n+1 is prime, then it must have a prime 
factorisation. If n+1 is not prime, then by the definition of a prime number 
there is an integer a dividing n+1 such that a≠1 or n+1. Writing b=(n+1)/a 
then  

n+1= ab and a,b Є (2,3,….,n) 

	



	

	
	
	
	

By assumption, P (a) and P(b) are both true i.e., a and b have prime 
factorisations. Say 

a=p1…pk, b=q1...ql, 

where all pi and qi are prime numbers. Then 

n+1=ab=p1…pkq1…ql. 

This is an expression for n+1 as a product of prime numbers. 

P(2),…,P(n) àP(n+1). Therefore, P(n) is true for all n≥2, by Strong Induction. 

It is also important for public key cryptography that prime factorisation 
is unique- there is only one way of writing an integer as a product of 
primes. This is because it essentially means there is only one way to 
decrypt a file –making the decryption more difficult. 

It is logical, that the larger a number is the harder it is to find its prime 
factors, so usually prime numbers with more than 200 digits are 
required for secure transmission of sensitive information. The discovery 
of new, larger, primes are considered so important there is a prize of 
$150,000, to the first individual or team who find a prime number with 
at least 100,000,000 decimal digits. There are many ways to find large 
prime number such as searching for the prime number terms in 
Fibonacci's sequence, as well as methods to test numbers to see if they 
are primes, such as a variant of Fermat’s Little Theorem, Miller’s test.  

 As quantum computers develop, cryptography will have to develop to 
stay ahead and the deputy director of the Institute for Quantum 
Computing at the University of Waterloo, estimates a one in two chance 
that quantum computing will break a public key crypto by 2031. 
However that will not be the end of the use of prime number in 
cryptography, merely the start of a new era. 

	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Complex Numbers aren’t that 
Complex 
By Toby Lawrance 
	
Complex numbers provide solutions to equations that 
don’t normally have a solution. Such as !! + 1 = 0 
where ! = ±√−1  but…we have a problem here! The √−1 
doesn’t exist, you can’t square root a negative number. 
Except…you can and the answer is represented by the 
letter !. Where !! = −1 and therefore ! = √−1 . 
This is known as an imaginary number, likely due to 
the lack of real world equivalent. A complex number is 
made of a real part and an imaginary part, for instance: 
The roots of the equation: (! − 3)! + 4 = 0 are ! = 3± 2! 
and tada! We can now solve a ton more equations, and 
all we had to do was add a letter and new system.  
Complex numbers can be used for a bunch of things, 
but they’re notable for a few, most people have seen the 
equation: !!! + 1 = 0 and potentially know it as Euler’s 
formula. The proof for which provides interesting 
insights into complex logarithms. But firstly… 
Complex numbers can be represented on an grid in the 
form ! + !! such that the complex number 3+ 2! has 
the location (3,2) on our grid. As shown below:  
 
 
 



	
	
	

This provides us with some additional 
info…namely, the angle it makes with the 
positive x-axis and it’s magnitude which is its 
length, in this instance, the magnitude is 
√3! + 2! = √13   and the angle from the 
positive x-axis, known as its “argument” 

which is measured in radians, is: !"!# !!!! =
0.588  
 
From this we can write our complex in 
another form: !!!" where r is our magnitude 
and ! is our argument.  
Therefore, we can rewrite 3 + 2! as √13!!⋅!.!"" 
which may look slightly worse but can lead us 
on to Euler’s equation. Where we ask, “How 
would we represent -1 as a complex number 
of the form !!!"?” and thus we convert (−1,0) 
to Complex form. 
 
In a regular sense, the value is −1+ 0! and 
therefore, our magnitude is 1 and our 
argument is Pi, so what would this look like? 
!!! exactly as 1 times anything is itself. 
Therefore…we can say that !!! = −1 which is 
exactly the same as !!! + 1 = 0 
And thus we’ve illustrated Euler’s formula, 
giving a brief introduction to Complex 
numbers in the process. 
 
  
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Mathematics and Language 
The Philosophy of Mathematics as a Universal 
Language 

By Alfred Cliff 
 

It has been a field of thought explored by many an interested individual who 
has been left alone long enough to consider it, “why is it that we cannot all 
learn a single language?”. The language barrier is one that many strive to 
overcome through learning another language. However, it often doesn’t occur to 
us that there is quite a different subject that has enabled the free 
communication of knowledge without the struggle of learning a second-
language. Mathematics is that which has been used to solve problems of 
physics and logic since its origination in the Middle East. 

 

Should one be of a mind to visit France, then, assuming they know no French, 
they would be quite at the mercy of the chance that a passing Frenchman 
speaks English. Of course, while many French speakers do speak English, 
there is nothing more reassuring than the possibility of a universal language. 
This language is mathematics. Wherever one travels, they will always know the 
truths of maths: two in addition to another two makes four. The idea that there 
is a shared knowledge and truth no matter where one goes, and whoever one 
converses with, is certainly a comforting one.  

 

Nevertheless, we find ourselves now at a barrier in this trail of thought. Too 
soon we have encountered a barrier: though mathematics will forever hold true, 
wherever one goes, it is not directly utilised as a language. In fact one must be 
capable of speaking another language in order to express the mathematics 
which I have already claimed to be a language in itself. So where am I coming 
from? How, do I believe, can we bring the language of maths into the scene of 
the other dominant world languages? Well, mathematics is more than just a 
general purpose language. A general purpose language is one such as Spanish, 

French or English. The communication through mathematics is not for general 

purpose, rather it is what is known as a discipline specific language.   

 

 

	



	
	

The disciplines within maths are used to communicate data on a huge scale, 
which can be read by anyone, regardless of their general-purpose language. 
Mathematics when used to communicate as a discipline specific language 
leads to extraordinary feats of human accomplishment. The most obvious 
being the field of Information and Communication Technology (ICT) which 
envelops computers, machines and coding. Mathematics has allowed for all 
digital and virtual advancement, which in those advancements themselves 
mankind has found new means of communication. 
 
The conclusion of this essay is that mathematics has, and continues to, offer 
people everywhere a common ground of communication, even if that language 
is a discipline-specific one. What mathematics can give us is a universal 
understanding of logic and the principles of communication. 



  The Basel Problem 
 By Hugo Barnet 

 

 

 

It seems like a simple problem, which many would go about by adding 
up the first few terms and trying to develop a pattern… However, some 
A-level students might have the bright idea of summing up some 
geometric series. Sounds straightforward, doesn’t it? However, one 
quickly realizes it is not so easy. In fact, it took one of the greatest 
mathematical minds in human history to solve it – Leonhard Euler. It 
was called ‘The Basel Problem’ after Euler’s hometown. The 
mathematician Pietro Mengoli first proposed this in 1644, and it took 
about 90 years to solve. Fairly long time, huh? 

 

Personally, I really enjoyed the proof of this problem because it 
combines a couple of different areas of mathematics and also once 
you get your head around it, the proof seems dead easy. In this 
article, I will attempt to make you, the reader, understand the beauty 
behind the proof. Hopefully it will inspire you to look past some of the 
tiresome and boring mathematics that is taught in schools and start 
to see it as the vibrant, creative subject it really is. 

So to start the proof, we need to look into a bit of trigonometry. 
Particularly, the Sinx curve. As many of you will already know, the 
curve f(x)=sinx will look like this 

 

 

	



	

When they ask you in the exam: What is the solution to f(x)=sin(x), you 
would be right in	saying π, but then again you would be right in say 2	π or 
3π. You would be right in saying “any integer number π”, because the sin(x) 
curve passes the x-axis infinitely many times at the coordinates (k	π,0) where 
k is an integer. For those saying to themselves, “what on earth is this guy is 
talking about”- as one advances through the world mathematics we start to 
use the unit system of radians instead of degrees. It very simple, 360 
degrees is 2	π, 180 degrees is π ect. 

 

 

 We can use this to find a polynomial for sin(x). If the solution for sin(x) is K	
π then we can make this polynomial. Through some basic algebra we can 
manipulate the equation so that we can get sin(x) in the form of 

  

 

 

 

If we mutiply out this polynonial we can get the a seires with all the cofficent 
to the x^2 

 

 

 

The next step to this problem requires some higher knowledge on the sin(x) 
curve that most of the reader will be unfamilar with. To get more familiar, 
one should look up taylor seires. Basically, the sin function can be written 
as an infinite sum. 

 

 

Euler started by imagining another seires very similar to the sin(x) but this 
time he called it the P(x). It was essentially the sin curve but with one less in 
the powers of X. Euler was then able to say that xP(x) was equal to the 
polynomial  sin x. 

	

52-Lt-
S( +t "'

-0(#,"

,'(# *# **.

Sdn14=t-C.

r -t * t - L"3r sl 1!

-t, z'-d3r 5r. ?l

p(r) =

rP(t) -- z

@

-r). .

)* )

*"'' ).. )

-)., .

*. '# \+.. ,in. ) * .

t &)d( - x'({ * *. * *" ,,*..

rp(')=x(t - ,,(i. - *. nr*. *

r(r)__ r _ r.(r_..*,.*#..1.

t-:'-fo*t.:r _r.(

I+J- \(<r1. ". /-/

\
T6 --'t*****

Z+

r P&) = sir(r-).

S;,fr) ={rtn)(r f zn)(t r3a)G!en).. -

s" (r)d{ 
- rt r) ( x, - ao, ) ( r. _t n r) (r" _ 1 6o.)

siG).r(1" ,)(# iH,

-zxil-
-7-tr _
?.1

9-_
6

52-Lt-
S( +t "'

-0(#,"

,'(# *# **.

Sdn14=t-C.

r -t * t - L"3r sl 1!

-t, z'-d3r 5r. ?l

p(r) =

rP(t) -- z

@

-r). .

)* )

*"'' ).. )

-)., .

*. '# \+.. ,in. ) * .

t &)d( - x'({ * *. * *" ,,*..

rp(')=x(t - ,,(i. - *. nr*. *

r(r)__ r _ r.(r_..*,.*#..1.

t-:'-fo*t.:r _r.(

I+J- \(<r1. ". /-/

\
T6 --'t*****

Z+

r P&) = sir(r-).

S;,fr) ={rtn)(r f zn)(t r3a)G!en).. -

s" (r)d{ 
- rt r) ( x, - ao, ) ( r. _t n r) (r" _ 1 6o.)

siG).r(1" ,)(# iH,

-zxil-
-7-tr _
?.1

9-_
6

52-Lt-
S( +t "'

-0(#,"

,'(# *# **.

Sdn14=t-C.

r -t * t - L"3r sl 1!

-t, z'-d3r 5r. ?l

p(r) =

rP(t) -- z

@

-r). .

)* )

*"'' ).. )

-)., .

*. '# \+.. ,in. ) * .

t &)d( - x'({ * *. * *" ,,*..

rp(')=x(t - ,,(i. - *. nr*. *

r(r)__ r _ r.(r_..*,.*#..1.

t-:'-fo*t.:r _r.(

I+J- \(<r1. ". /-/

\
T6 --'t*****

Z+

r P&) = sir(r-).

S;,fr) ={rtn)(r f zn)(t r3a)G!en).. -

s" (r)d{ 
- rt r) ( x, - ao, ) ( r. _t n r) (r" _ 1 6o.)

siG).r(1" ,)(# iH,

-zxil-
-7-tr _
?.1

9-_
6

52-Lt-
S( +t "'

-0(#,"

,'(# *# **.

Sdn14=t-C.

r -t * t - L"3r sl 1!

-t, z'-d3r 5r. ?l

p(r) =

rP(t) -- z

@

-r). .

)* )

*"'' ).. )

-)., .

*. '# \+.. ,in. ) * .

t &)d( - x'({ * *. * *" ,,*..

rp(')=x(t - ,,(i. - *. nr*. *

r(r)__ r _ r.(r_..*,.*#..1.

t-:'-fo*t.:r _r.(

I+J- \(<r1. ". /-/

\
T6 --'t*****

Z+

r P&) = sir(r-).

S;,fr) ={rtn)(r f zn)(t r3a)G!en).. -

s" (r)d{ 
- rt r) ( x, - ao, ) ( r. _t n r) (r" _ 1 6o.)

siG).r(1" ,)(# iH,

-zxil-
-7-tr _
?.1

9-_
6



	

 

 

 

 

 

 

 

 

 

If that is true then xP(x) must be equal to the polynomail we previously 
wrote down. Therefore 
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Number	Theory		
	
	
Introduction	
The	Number	Set	is	a	set	of	positive	integer	numbers	1,2,3,4,5,6,7,...,	Devoted	primarily	to	the	studies	
of	integers	and	is	sometimes	called	“The	Queen	of	Mathematics”	due	to	its	foundational	place	in	the	
discipline.	It	consists	of	the	study	of	the	properties	of	the	whole	numbers.	Prime	and	Prime	
factorization	are	especially	important	in	number	theory,	as	are	many	functions	such	as	the	divisor	
function,	Riemann	zeta	function,	and	totient	function.	Excellent	introductions	to	number	theory	may	
be	found	in	Ore	(1988)	and	Beiler	(1966).	
	
Main	difficulty	in	proving	relatively	simple	results	in	number	theory	prompted	no	less	an	authority	
than	Gauss	to	remark	that	"it	is	just	this	which	gives	the	higher	arithmetic	that	magical	charm	which	
has	made	it	the	favourite	science	of	the	greatest	mathematicians,	not	to	mention	its	inexhaustible	
wealth,	wherein	it	so	greatly	surpasses	other	parts	of	mathematics."	Gauss,	often	known	as	the	
"prince	of	mathematics,"	called	mathematics	the	"queen	of	the	sciences"	and	considered	number	
theory	the	"queen	of	mathematics"	(Beiler	1966,	Goldman	1997).	In	contrast	to	others	branches	of	
mathematics,	many	of	the	problems	and	theorems	of	number	theory	can	be	understood	by	
laypersons,	although	solutions	to	the	problems	and	proofs	of	the	theorems	often	require	a	
sophisticated	mathematical	background.	
	
Until	the	mid-20th	century,	number	theory	was	considered	the	purest	branch	of	mathematics,	with	
no	direct	applications	to	the	real	world.	The	advent	of	digital	computers	and	digital	communications	
revealed	that	number	theory	could	provide	unexpected	answers	to	real-world	problems.	At	the	same	
time,	improvements	in	computer	technology	enabled	number	theorists	to	make	remarkable	advances	
in	factoring	large	numbers,	determining	primes,	testing	conjectures,	and	solving	numerical	problems	
once	considered	out	of	reach.	
	
In	today’s	world,	the	Modern	number	theory	is	a	large	subject	that	is	divided	into	subjects	that	
include	elementary	number	theory,	algebraic	number	theory,	analytical	number	theory,	geometric	
number	theory,	and	probabilistic	number	theory.	These	categories	reflect	the	methods	used	to	
address	problems	concerning	the	integers.	
	
From	Pre-History	Through	Classical	Greece	
Near	the	beginning	of	civilisation,	people	had	understood	the	idea	of	‘multiplicity’	and	so	had	taken	
the	first	steps	toward	a	study	of	numbers.	It	is	known	that	the	understanding	of	numbers	existed	in	
ancient	Mesopotamia,	Egypt,	China,	and	India,	for	tablets,	papyri,	and	temple	carvings	from	these	
early	cultures	have	survived.	A	Babylonian	tablet	known	as	Plimpton	322	(c.	1700	bc)	is	the	main	
point.	In	modern	notation,	it	displays	number	triples	x,	y,	and	z	with	the	property	that	x2	+	y2	=	z2.	
One	such	triple	is	2,291,	2,700,	and	3,541,	where	2,2912	+	2,7002	=	3,5412.	This	reveals	a	degree	of	
number	theoretic	agreement	in	ancient	Babylon.	
	
Diaphantus	
An	author	of	a	book	–	Arithmetica.	The	equations	are	called	Diophantine	Equations	of	which	the	
solutions	must	bewhole	numbers.	For	example,	Diophantus	asked	for	two	numbers,	one	a	square	and	
the	cube,	so	that	the	sum	of	their	squares	is	square	itself.	In	today’s	symbols,	he	sought	integers	x,	y,	
and	z	such	that	(x2)2	+	(y3)2	=	z2.	Finding	real	numbers	is	easy	satisfying	this	relationship	(e.g.,	x	=	√2,	
y	=	1,	and	z	=	√5),	however,	the	requirement	that	solutions	be	integers	makes	the	problem	more	
difficult.	(One	answer	is	x	=	6,	y	=	3,	and	z	=	45.)	Diophantus’s	work	strongly	influenced	the	future	
mathematics.	



	
Number	Theory	in	the	East	
Chinese	and	Indian	scholars	proposed	their	contribution	to	the	theory.	They	were	so	motivated	by	
questions	of	astronomy	and	the	calendar,	the	Chinese	mathematician	Sun	Zi	tackled	multiple	
Diophantine	equations.	He	asked	for	a	whole	number	that	when	divided	by	3	leaves	a	remainder	of	2	
when	divided	by	5	leaves	a	remainder	of	3,	and	when	divided	by	7	leaves	a	remainder	of	2	(his	
answer:	23).	Almost	a	thousand	years	later,	Qin	Jiushao	(1202–61)	gave	a	general	procedure,	now	
known	as	the	Chinese	remainder	theorem,	for	solving	problems	of	this	sort.	
	
Modern	Number	Theory	
	
From	1400	to	1650,	as	mathematics	flowed	from	the	Islamic	world	to	Renaissance	Europe,	the	
amount	of	attention	number	theory	got	decreased.	Important	advances	in	geometry,	algebra,	and	
probability	have	occurred	not	to	mention	the	discovery	of	both	logarithms	and	analytic	geometry.	But	
number	theory	was	a	minor	subject	and	therefore	only	of	a	recreational	interest.	
	
Pierre	de	Fermat	
	
Pierre	de	Fermat	(1601–65),	has	changed	the	perception	a	French	magistrate	who	had	time	and	a	
passion	for	numbers.	Although	he	published	little,	Fermat	posed	the	questions	and	identified	the	
issues	that	have	amended	number	theory	ever	since.	For	example:	
	
1.	In	1640	he	proposed	what	is	known	as	Fermat’s	little	theorem,	that	if	p	is	prime	and	a	is	any	whole	
number,	then	p	divides	evenly	into	ap	−	a.	so,	if	p	=	7	and	a	=	12,	the	far-from-obvious	conclusion	is	
that	7	is	a	divisor	of	127	–	12	=	35,831,796.	This	theorem	is	one	of	the	great	tools	of	modern	number	
theory	today	
	
2.	In	1638	Fermat	stated	that	every	whole	number	could	be	expressed	as	the	sum	of	four	or	fewer	
squares.	He	claimed	to	have	a	proof	but	did	not	share	it.	
	
Uncharacteristically,	Fermat	gave	a	proof	of	this	final	and	last	result.	He	used	a	technique	called	
‘infinite	descent’	that	was	ideal	for	demonstrating	the	impossibility.	The	logical	strategy	assumes	that	
there	are	whole	numbers	satisfying	the	condition	in	question	and	then	generates	smaller	whole	
numbers	satisfying	it	as	well.	Reapplying	the	argument	over	and	over,	Fermat	produced	an	endless	
sequence	of	decreasing	whole	numbers.	But	this	is	impossible,	as	every	set	of	positive	integers	must	
contain	the	smallest	member.	By	this	contradiction,	Fermat	concluded	that	no	such	numbers	could	
exist	in	the	first	place.	Despite	Fermat’s	unique,	number	theory	still	was	relatively	rejected	perhaps	
because	of	his	reluctance	to	supply	the	proofs.	
	
Prime	Number	Theorem	
	
One	of	the	largest	achievements	of	19th-century	mathematics	was	the	prime	number	theorem.	First,	
you	designate	the	number	of	primes	less	than	or	equal	to	by	π(n).	Thus	π(10)	=	4	because	2,	3,	5,	and	
7	are	the	four	primes	not	exceeding	10.	Similarly	π(25)	=	9	and	π(100)	=	25.	Next,	consider	the	
proportion	of	numbers	less	than	or	equal	to	n	that	are	prime—i.e.,	π(n)/n.	Clearly,	π(10)/10	=	0.40,	
meaning	that	40	percent	of	the	numbers	not	exceeding	10	are	prime.	

	



	

	

The	prime	number	theorem	identifies	at	least	one,	thereby	provides	a	rule	for	the	distribution	of	
primes	among	the	whole	numbers.	The	theorem	says	that,	for	large	n,	the	proportion	π(n)/n	is	
roughly	1/log	n,	where	log	n	is	the	natural	logarithm	of	n.		
	

 

 

Number	Theory	in	the	20th	Century	
The	20th	Century	saw	an	explosion	in	number	theoretic	research.	As	well	the	classical	and	analytic	
number	theory,	scholars	now	explored	specialised	subfields	such	as	algebraic	number	theory,	
geometric	number	theory,	and	combinatorial	number	theory.	The	concepts	became	more	abstract	
and	the	techniques	more	sophisticated.	Therefore,	the	subject	had	grown	beyond	Fermat’s	dreams.	
	
A	legendary	figure	in	20th-century	number	theory	was	Paul	Erdős	(1913–96),	a	Hungarian	genius	
known	for	his	deep	insights,	his	vast	circle	of	collaborators,	and	his	personal	oddities.	At	age	18,	
Erdős	published	a	much	more	simplified	proof	of	a	theorem	of	Chebyshev	saying	that,	if	n	≥	2,	then	
there	must	be	a	prime	between	n	and	2n.	This	was	the	first	in	a	string	of	number	theoretic	results	
that	would	span	most	of	the	century.	In	the	process,	Erdős—who	also	worked	in	combinatorics,	
graph	theory,	and	dimension	theory—published	over	1,500	papers	with	more	than	500	collaborators	
from	around	the	world.	He	achieved	this	success	while	constantly	travelling	from	one	university	to	
another	in	pursuit	of	new	mathematics.	It	was	not	uncommon	for	him	to	arrive,	unannounced,	with	
the	declaration	that	“My	brain	is	open”	and	then	to	plunge	into	the	latest	problem	with	gusto.	
Twentieth-century	number	theory	reached	a	high	climax	in	1995,	when	Fermat’s	last	theorem	was	
proved	by	the	Englishman	Andrew	Wiles,	with	timely	assistance	from	his	British	colleague	Richard	
Taylor.	Wiles	succeeded	where	so	many	had	failed	with	a	130-page	proof	of	incredible	complexity,	
one	that	certainly	would	not	fit	into	any	margin.	



 

∞INFINITY ∞ 
By Sean Carslaw Tricot 
 

Infinity is big. Infinitely big. But what do we know about this fundamental 
concept of mathematics and what are it's uses. 

 
Getting there... 
 
Going through the big numbers we 
always think we are getting closer 
to infinity but we are always as far 
as we always were... 
  
18,446,744,073,709,551,615 : 
 
This interesting number comes 
from and ancient tale about chess 
where 3000 years ago in India, 
King Belkib is asked to put a grain 
of rice on the first square of a 
chessboard and double the 
number of grains on the next 
square of the chessboard. The king 
accepted.  But what he didn't know 

was that he had to put 2n on the 

nth square. This meant that on the 
last square, he had to put 263 
grains of rice. The number that we 
are talking about is the total 
number of grains of rice that 
should be on the chessboard. This 
may seem like a fairly big but not 
too impressive number when 
talking about grains of rice but the 
amazing fact is that since one 
grain of rice weight 
approximatively 0.04 g, the king 
needs to put 738 billion tons of 
rice on that chessboard. Enough to 
feed humanity for centuries... 

Googol, 10100 : 
 
Googol or sometimes google is 
much, much bigger than the last 
number (approx. 1019).  
 

 
 
Luckily, it is probably the simplest 
number on this page since its 
value is only (only!) 10 to the 
power of 100. But, this number is 
also VERY big. It is deemed to be 
much bigger than the number of 
particles in the universe (protons + 
neutrons + electrons), estimated to 
be approximatively 1080. 
  

Googolplex, 10googol: 
 
OK. Now that we know what google 
is, what if we made an even bigger 
number? Hmm... Right, let’s have 
10 to the power of... google! To put 
this into perspective, this is in 
effect a 1 followed by a google 
zeros! 
  
3↑↑↑3 : 
 
Now here we have a strange and 
MUCH, like, seriously much bigger 
number than googolplex. This 
number is written with the Knuth 
up arrow notation. To explain: take 
5↑3. In this case, this is read: ' 
take three fives and multiply them 

together' = 53 = 125.  
 
Now take 5↑↑3: this is 5 to the 
power of 5 to the power of 5, which 

amounts to 53125, this is basically 
a 'tower' of powers of 5 with 3 
'levels' already much, much bigger 
than google.  
So what is 3↑↑↑3? Well, 3↑↑↑3 can 
also be written 3↑↑3↑↑3. This is a 



 

'tower' of powers of 3 with 3↑↑3 
'levels'.  
Now we can conclude from our 
explanations that 3↑↑3 is 3 with 3 
'levels of powers', 327. So therefore 

3↑↑↑3 is a tower with 327 levels of 
powers of 3. That is 7625 billion 
levels! A massive change from 
googolplex! 

  
Graham's number : 
 
This number is the biggest number 
ever used to solve a theoretical 
problem. Compared to the previous 
number, it doesn't have 4, 1000 
nor even a billion arrows but an 
unimaginable number of these! 
This number was used to solve a 
theoretical problem to... colour a 
hypercube. A geometrical shape 
with the same properties as a cube 
but in more than 3 dimensions. 
 
To construct this number, take the 
previous number (3↑↑↑3), this is 
the number of arrows between the 
threes of the next number, which 
is the number of arrows between 
the threes of the next number...etc. 
Now repeat these steps until the 

65th iteration, Graham's number. 
  
 … Infinity? 
 
Going though these numbers 
getting bigger and bigger we get the 
impression that we should be 
getting closer to infinity but we are 

still at our starting point, because 
infinity is … infinitely big! 
Paradoxes 
 
Dichotomy paradox : 
Imagine you are throwing 
something hard at someone you 
really don't like, let's say you are 
throwing a rock. Now, before that 
rock reaches that certain person it 
needs to travel a certain distance. 
Before it travels that distance, it 
travels half. And before travelling 
that, it travels half of that, and so 
on infinitely. But will it then never 
reach this certain person? No need 
to pick up another rock, here is the 
proof: 
 
let S be the infinite sum: 
S = 1 + ½ + ¼ + … 
Now factorise by ½: 
S = 1 + ½(1 + ½ + ¼ + ...) 
Notice how the sum in the 
parenthesis is the same as the first 
so we can write: 
S = 1 + ½S 
2S = 2 + S 
solve: 
2S – S = 2 
S = 2 
This proves how this infinite sum = 
2. Not very infinite if you ask me! 
 
The box gets fuller but is always 
empty : 
 
In Greek mythology, the Danaids 
were condemned to fill a pierced 
bucket with water which let out 
more water than they put in. 
Impossible. But what if you were 
tasked to fill a box with ping pong 
balls and for every ten you put in 
only one came out? Would you 
accept the challenge? Be careful 
because when infinity is in the 
mix, it's easy to go wrong... So, 
during the first minute, you throw 





 

10 balls in, the first ball comes out 
→ there are 9 balls in the box.  
You decide to speed up and in half 
a minute, you throw ten more 
balls, ball number 2 comes out → 
there are 18 balls in the box. So 
each time you add 9 balls. Each 
time you throw 9 balls in in half 
the time of the previous throw. Still 
following? Now doing this to 
infinity, you add 9 balls in (1 + ½ + 
¼ + …) minutes. As concluded 
from the last paradox, that all 
amounts to 2. This isn't as simple 
as it may seem... On throw 1, ball 
1 comes out, on throw 2, ball 2 
comes out... So in 2 minutes, you 
add an infinite amount of balls, 
BUT an infinite amount of balls 
come out. So in the end, the box 
you are filling is always... empty! 
 
Step by step : 
Draw an isosceles right angled 
triangle on the floor, now stand at 
an angle but make sure that it is 
not the right angle. You want to go 
to the other non-right angle in the 
triangle. You would opt to go along 
the hypotenuse, the shortest 
distance. But is it really? Let's see. 
Take the two non-hypotenuse sides 
and divide them into two and 
create a step with the two parts 
adjacent to the right angle. Repeat 
this with each of these new lines 
until you cannot distinguish the 
steps, do it infinitely. With this 
your triangle only appears to have 
one hypotenuse and that is it. If 
each of the original sides were 1 
meter, than 2 = √2 . Now you are 
thinking: What? This is impossible, 
impossible to reduce this distance 
of 2 to its square root by simply 
stepping it infinitely. The catch 
here is that by stepping infinitely, 

your sides are infinitely small BUT 
you have infinitely many of them! 
These cancel. 
 
Fractals 
 
Fractals are a very fascinating 
mathematical object. A fractal is a 
self-similar, infinitely recursive 
pattern. It can be exactly self-
similar at al scales, like the Koch 
snowflake: 

 
 or quasi self-similar like the 
Mandelbrot set: 
 

 
Fractals are a paradox themselves 
since if infinitely recursive, they 
have an infinite perimeter for a 
finite volume. This is true for all 
fractals as it is part of their 
definition! 
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Generating	Functions	
	
	
A Generating Function f x( )  is a power series

f x( ) = anx
n

0

∞

∑

whose coefficients give the squence {a0,a1,a2...}

	

	
	
	
	
	
	
An example,

Consider the infinite series f x( ) = xn
n=0

∞

∑ =1+ x + x2 + x3....

 The generating function for this series is
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2n+3( )An+1 = 2 n+1( )An
2n+ 2( )An+1 + An+1 = 2 n+1( )An
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This,  first order linear differential equation, can be solved 
using integrating factor and partial fractions.
(Solving D is left as an exercise to keen students)
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Q.E.D	
	

By	Mr	YADSAN	



Vertical ‘Stretch’ 
Lessons 
During the course of the year, Mr Yadsan invited keen 
mathematicians, from all year groups, to his captivating 
vertical stretch lessons. In these lessons, we learnt complex 
mathematical topics which tested our ability to apply our 
existing mathematical knowledge to advanced theories and 
principles. 

 

Vertical Stretch Upper School: 

We started of our lecture series with Multivariable Calculus. 
We studied the fundamental concepts of mathematical 
physics, such as double and triple integrals in Cartesian, 
Polar and Spherical coordinates. The next lecture series was 
on numbers and sequences, where we covered, Convergence 
and Divergence of series and sequences. We proved and 
used L’Hopital’s Rule, Pseries, Integral Test and the 
Comparison test. In the Lent term, we started on Linear 
Algebra where we covered, solving system of linear 
equations using augmented matrices and elementary 
rowoperations. We progressed to the determinant function 
and used Cramer’s Rule to solve linear systems. We also 
looked at vector spaces, spanning and linear independence, 
bases and how to evaluate the points of stability using the 
determinant of Hessian Matrix.  

	



 

 
 
 

 

 
 
 
 
 
 

Vertical Stretch Lower 
School: 

Lower school mathematicians 
covered various topics in 
mathematics. We looked at 
some basic Linear algebra, 
how to add, subtract and 
multiply matrices and how to 
work-out the determinant of 
two by two matrices. Lower 
school mathematicians also 
enjoyed and were 
intellectually challenged by 
the complex numbers. In this 
lecture series, we have learnt 
what a complex number was 
and why was it needed. 
Towards the end of this 
lecture series, Lower school 
mathematicians were able to 
tackle advanced level 
question, such as finding the 
nth root of complex numbers, 
such as z5 = (2 – 3i) ,For the 
summer term, Lower school 
mathematicians will attend a 
lecture series on Number 
Theory.  

 



 

Gaussian Group 
2016 - 2017 

 

This year Stowe’s Maths Society, the Gaussian Group, had several meetings 
covering a broad range of topics from quantum mechanics to the maths 
behind bottle flipping!  

Our meetings started off with a captivating but complex proof                                                                                                            
which showed that two parallel lines, in fact, meet at infinity. Mind-boggling! 
In the following week we had a lower school Gaussian group meeting where 
the connection between mathematics and hate was investigated. In this talk 
'Geometry of Hate' we explored: the subtle relationship between 
mathematics and hate, Hitler and mathematics and how failure in 
mathematical thinking could lead to fascist movements and civil wars?  

In the next a few meetings we focused on the lecture series called “The loss 
of Truth”. We started off with the famous Russell’s paradox: 

Suppose there is a town with just one barber. In this town, every man either 

                        1) Shaves himself, or  

                        2) Is shaved by the barber. 

If the barber shaves himself, then which category does he fall into? Men who 
shave themselves or Men who are shaved by the barber? 

We realized that the Russell’s paradox was not simply a philosophical word 
game but it was a dagger that penetrated the heart of mathematics because 
it pointed out an inconsistency in the set theory, which is the foundation of 
mathematics, everything else in mathematics built on it.  



 

In the following lectures we witnessed how hard mathematicians worked, for 
many years to overcome this difficulty and save Cantor’s infinite sets. This 
paradox was finally solved by redefining the set theory through ZF-Axioms.   

Following the loss of truth series, Stoics enjoyed two fascinating talk from 
Hugo Barnett and Toby Lawrance. Hugo’s talk was on number theory where 
he demonstrated how messages are coded. Toby’s talk discussed different 
bases, as used by the Babylonians, and explained the advantages of us 
changing from our current base 10 number system to a base 12 number 
system.   

Just before Christmas, the Gaussian group held a quiz night organized by 
our diligent president Anna Wilson. It was both enjoyable and challenging – 
as all Gaussian group meetings are and it was the perfect way to end a very 
busy term. 

The first meeting in the Lent term was a joint event with the school’s second 
best society: The Quantum Society. The talk was thought provoking and 
asked profound questions; It was called, 

“Machine vs Soul. On the interpretations of Quantum Mechanics”.  

In the talk we tackled both mathematical and philosophical problems: 

Isn't the nature of reality and our perception of it is fascinating? The 
Observer effect is highly respected and an experimentally verified fact in 
Quantum Mechanics. When we look at something we change it! Just by 
looking at it. Do you believe that? Do you believe that you are changing this 
article simply by reading it! That’s what Quantum Mechanics says. Why 
does Quantum Mechanics abstract observer from reality? Why does it treat 
human perception as an outsider who perturbs the system? What if we are a 
part of the truth and not an outsider?  

 The next event was made up of two talk by members of the Gaussian group. 
Anna Wilson gave an interesting and inspiring talk on Golden Ratio and its 
applications in the nature. We have noticed that there is a mathematical 
reason why the four-leaf clover is hard to find and is lucky. Because four is 
not a Fibonacci number, therefore it is hard to find in the nature.  

Stuart Milner gave a talk on something very simple but we all were amazed  

to see how mathematical physics played a crucial role in ‘bottle flipping’. His 
talk made the relation between the stability and the centre of mass more 
visible to all listeners. Adrian Koch then gave a talk on Artificial Intelligence 
where he linked computer sciences and mathematics.  

The last event of this academic year was a distinguished speaker: Dr Marcus 
Appleby: 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

‘What does an atom look 
like?’ 
Dr Marcus Appleby, from Sydney University visited Stowe to give a talk 
on the Philosophy of Quantum Mechanics, entitled “What does an atom 
look like?” He is one of the world’s leading Quantum Physicist in his field 
of SIC-POVM (A symmetric, informationally complete, positive operator 
valued measure). His talk pointed out a fundamental contradiction 
between our perception and how nature works. He pointed out that: 

“On one hand, we are the masters of the universe at subatomic level. We 
understand it so well that we can even build nuclear bombs. But on the 
other hand, Quantum Mechanics clearly demonstrates that we don’t even 
know what an electron is. Is it a particle or a wave or both or none? In fact, 
we don’t even know whether is it something physical or it is simply a 
mathematical modelling?”  

This was an extremely profound statement and left the room speechless! 
This talk was the best way to wrap up the Gaussian groups meeting in 
this academic year and we’d like to thank Dr Marcus Appleby for giving 
such a gripping talk.  

 

Hakan Yadsan, Teacher of Mathematics 

 



	

	

	

	

‘Local	Maximum	Sessions’	
Oxbridge	lessons,	where	Oxbridge	hopefuls	gather	to	tackle	MAT	and	STEP	questions.	



Maths	Jokes	
Why can’t a bicycle can’t stand alone? 

because it is two-tired. 

Statistics show that those who celebrate more birthdays live longer.  

A statistician can have his head in an oven and his feet in ice, and he will 
say that on average he feels fine.  

According to my calculations, the problem does not exist.  

There are three kinds of 
mathematicians: those who can 
count, and those who cannot. 

Mathematics consists of 50% 
formulas, 50% proofs and 50% 
imagination.  
	

Maths	riddles		
Which month have 28 days 
All of them 
 
What insect is good with 
numbers? 
An account-ant 
 
Who invented the fractions? 
Henry the Eighth 
 
How can you tell that the fractions x/c, y/c and z/c live in a foreign 
country? 
Because they are all over c’s. 
	



 

 
 
 
 
 
 

 
 
 



	

	

I	have	no	special	talents.	
I	am	only	passionately	curious.		
	
Albert	Einstein	
	

	


